
  
 
 

 ARL-TR-7276 ● APR 2015 
 
 
 

 US Army Research Laboratory 

 

 

Fast Computation on the Modern Battlefield 
 
 
by David L Doria, Jamie K Infantolino, and Peter J Schwartz 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.

  



 

 

NOTICES 
 

Disclaimers 
 

The findings in this report are not to be construed as an official Department of the 
Army position unless so designated by other authorized documents. 
 
Citation of manufacturer’s or trade names does not constitute an official 
endorsement or approval of the use thereof. 
 
Destroy this report when it is no longer needed. Do not return it to the originator. 
 



 

 

 
 
 

 ARL-TR-7276 ● APR 2015 

 
 US Army Research Laboratory 

 

 

Fast Computation on the Modern Battlefield 
 
 
by David L Doria, Jamie K Infantolino, and Peter J Schwartz 
Computational and Information Sciences Directorate, ARL 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.



 

ii 
 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection information  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302  
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid 
OMB control number  
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

April 2015 
2. REPORT TYPE 

Final 
3. DATES COVERED (From - To) 

NA 
4. TITLE AND SUBTITLE 

Fast Computation on the Modern Battlefield 
5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

 
5c. PROGRAM ELEMENT NUMBER 

 
6. AUTHOR(S) 

David L Doria, Jamie K Infantolino, and Peter J Schwartz 
5d. PROJECT NUMBER 

 
5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

US Army Research Laboratory 
ATTN: RDRL-CIH-S 
Aberdeen Proving Ground, MD 21005-5067 

8. PERFORMING ORGANIZATION REPORT NUMBER 

 
ARL-TR-7276 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
10. SPONSOR/MONITOR'S ACRONYM(S) 

 
11. SPONSOR/MONITOR'S REPORT NUMBER(S) 

 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 

 

14. ABSTRACT 

In critical and life threatening situations faced by Soldiers on the battlefield, timely response to complex information is 
required. In such situations, battlefield computation can help to distill data into actionable information that can lead to better 
decision-making and outcomes. However, computing power is limited on the tactical edge due to size, weight, and power 
constraints of a Soldier’s mobile device. One potential solution to this problem is to offload the computation to a more 
powerful computer to obtain an answer as fast as possible. However, this strategy comes at the cost of the introduction of a 
delay due to communication latency. It is therefore important to design the offloading mechanism intelligently. This report, 
presents a model to estimate the performance of offloading systems in current and future scenarios. The modularity of this 
model allows system designers to replace model components with the accuracy and level of detail necessary for their analyses. 
This report examines how this type of model is useful for making decisions about when and where to offload jobs, as well as 
making hardware acquisition decisions for improving the system over time. 
15. SUBJECT TERMS 

computation, offloading, tactical 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION 
OF ABSTRACT 

UU 

18.  NUMBER 
OF PAGES 

20 

19a. NAME OF RESPONSIBLE PERSON 

David L Doria 
a. REPORT 

Unclassified 
b. ABSTRACT 

Unclassified 
c. THIS PAGE 

Unclassified 
19b. TELEPHONE NUMBER (Include area code) 

410-278-2310 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 

iii 

Contents 

List of Figures iv 

List of Tables iv 

1. Introduction 1 

2. Related Work 1 

3. Motivation 3 

4. Computation Offloading Model 4 

4.1 Computational Job 4 

4.2 Utility Function 5 

4.3 System Latency 6 

4.4 Usefulness Over Time 7 

5. Analysis 7 

Decision Boundaries 9 

6. Conclusions and Future Work 10 

7. References 11 

Distribution List 13 



 

iv 

List of Figures 

Fig. 1 Conceptual sketch of various regions in the space of computation 
strategies ...................................................................................................4 

Fig. 2 Utility step function ...................................................................................5 

Fig. 3 An illustration of the relationships between the major model 
components. The moving from left to right over the dashed vertical line 
indicates a step 1 year forward in time .....................................................7 

Fig. 4 Prediction of communication, computation, and total response time vs. 
distance from user ......................................................................................8 

Fig. 5 Response time and utility as a function of years into the future .............9 

Fig. 6 Offloading decision boundaries ..............................................................10 
 
 

List of Tables 

Table Estimated values versus distance ..............................................................8 
 



 

1 

1. Introduction 

In critical and life threatening situations faced by Soldiers on the battlefield, timely 
response to complex information is required. In such situations, battlefield 
computation can help to distill data into actionable information that can lead to 
better decision-making and outcomes. However, computing power has been 
historically limited on the tactical edge due to size, weight, and power constraints 
of mobile devices. One potential solution to this problem is to offload the 
computation to a more powerful computer to obtain an answer as fast as possible. 
Computation offloading provides an alternative strategy in which the user’s 
computational job is communicated to another computing device with greater 
processing power that processes the data and communicates the result back to the 
user. The potential advantages of computation offloading include decreased 
computation time, decreased battery consumption due to computation, and possibly 
increased security and resiliency. However, these features come at the cost of the 
introduction of communication latency and increased battery consumption due to 
communication. It is therefore important to design the computation mechanism 
intelligently so as to maximize the advantages and minimize the disadvantages. 

Another important aspect to consider is the continually evolving nature of 
computers and processing power. The power available today on most handheld 
devices is equivalent to the power available on a desktop only a few years ago. It is 
important to consider how far into the future computing on various devices will be 
possible when considering long-term planning. In this report, we present the 
development of a computation offloading model used to determine the best strategy 
to minimize total response time now and in the future. 

In Section 2, we discuss related and previous work in this area. In Section 3, we 
detail our motivation for this work and explain why our high-level approach to 
modeling is an important step in the design of an offloading system. In Section 4, 
we describe the objectives of our model and the process we used to develop it. 
Section 5 details the types of analysis that are possible using a simple instantiation 
of the model we have described. Finally, in Section 6 we present some conclusions 
based on initial results and explore potential future work. 

2. Related Work 

As mobile technology has matured and increased in popularity, there have been 
many efforts to reduce energy requirements while increasing the computational 
power of the devices. The concept of offloading computations to nearby or even  
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distance resources has been widely explored. Previous studies1,2 have shown 
certain portions of the code are offloaded to increase overall performance both 
in terms of increased computation power and decreased energy consumption. This 
shows that offloading is feasible in various situations; however, this work does not 
concentrate on the time sensitive analysis that is needed on the modern battlefield. 

With computation offloading comes an overhead cost of transferring data to 
the remote device and transferring the answer back. Therefore, the benefits of 
computing on other devices must outweigh the data transfer time. The total 
cost (transfer time plus computation time) has been explored.3 There have been 
studies4 that concentrated on minimizing energy consumption as the main 
objective for offloading. This is important to consider in a time critical 
scenario, but it cannot be the sole consideration. Obtaining the computational 
results as quickly as possible while maintaining lower energy consumption is 
often a useful strategy. 

Another idea that has been explored is to provide a software-based framework 
that will offload portions of the application to any available hardware.5,6,7  
Each of these provides a framework or software interface that will offload 
various modules within the application to the cloud without the programmers 
explicitly specification which is different than previously discussed work 
because the software based framework makes the offloading decisions. 
However, this strategy does not predict the potential performance gained and 
there is no guarantee of the performance that will be achieved. 

Delegation is another computation strategy used by mobile application 
developers to decrease computation time. In another study,8 the authors 
compare offloading to delegation to determine the benefits and shortcomings 
of each in different scenarios with current technology. It was determined that 
offloading is more feasible with current mobile technology, which is vital for 
success on the battlefield.  

The use of a cloudlet (or collection of mobile devices with cloud-like services) 
for computation offloading has been studied9,10 and shown to reduce energy 
costs while maintaining an acceptable computation rate. Under this strategy, 
high-powered computers can be geographically farther apart and reserved 
exclusively for very computationally intensive applications. This reduces 
energy costs overall; however, the acquisition and deployment of additional 
physical hardware may be necessary.
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3. Motivation 

The purpose of this work is to develop a set of models that we will use to evaluate 
and compare alternative computation strategies at a conceptual level. These 
models have several purposes. First, they motivate and quantify the need for 
computation offloading, particularly in tactical environments. They also allow 
rapid evaluation of alternative computation strategies under a variety of conditions. 
Our models can also be applied to time-critical applications in nonmilitary 
settings, such as emergency response. 

For all of the computation strategies considered in this work, we are interested in 
analyzing the total response time, r of the system, which we define as the time it 
takes to provide a response to the user. Total response time can be computed as 
the sum of the communication time and the computation time. We define 
communication time as the time that it takes to transfer the required data to the 
device that performs the computation and to transfer the resultant data back to the 
user. We define computation time as simply the time required for the target device 
to process the data. 

In any setting, performing computation solely on the user’s handheld device will 
require no communication time, but relatively high-computation time. In a 
commercial setting (with high-bandwidth network infrastructure), data can be sent 
very quickly to a remote data center with very high-computational capacity, so 
computation time can be reduced dramatically at the cost of only a relatively 
small increase in communication time. While this communication latency might 
be intolerable for real-time interactive applications (e.g., augmented reality), it is 
acceptable for many common applications (e.g., route planning). As long as total 
response time is acceptable, monetary cost minimization is the dominant factor in 
designing a commercial computation offloading system. 

In a military setting, the network infrastructure is often disrupted, intermittent, 
and low-bandwidth. This greatly increases communication time, which opens a 
potential technology gap. It might be possible to fill this gap by deploying 
strategic (regional), tactical (local)11, or mobile (1-hop) High-Performance 
Computers (HPCs) within the network providing new offloading targets between 
the centralized data center and the user’s handheld device. We illustrate this gap 
visually in Fig. 1. 

As shown in Fig. 1, as the distance between the user’s handheld device and the 
device that performs the computation increases (in terms of number of network 
hops), there are 2 important changes. First, the communication time increases 
because the data must be sent farther through the network. Second, the  
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computation time decreases because the data can reach a more powerful computer. Based 
on these ideas, in this work we develop a model that combines existing models of computer 
and network performance along with reasonable system architecture assumptions and 
parameter estimates. 

 

Fig. 1 Conceptual sketch of various regions in the space of computation strategies 

4. Computation Offloading Model 

When designing our model, our 2 major goals were simplicity and modularity. We wanted 
the model to not necessarily answer every question for every scenario, but rather expose 
easy to adjust values that allow designers to model their situation of interest. By designing 
the model modularly, we minimize the interactions between the various components, 
localizing the effects of a change to any one component. 

Our model describes the relationships between many components, including the 
computational job, the network, the available compute devices, the computation strategy, 
utility to the user, and the development of technology over time. The Computational Job 
characterizes the computation that the user wishes to perform. A set of Compute Devices 
describes computers that are potentially available to execute the Computational Job. The 
Network describes the communication network that can transfer data between the user’s 
handheld device and other Compute Devices. 

4.1 Computational Job 

We describe a computational job with several parameters: the number of operations 
necessary to execute the job, the deadline by which the user needs a response, and the max
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utility, umax , that is achieved for providing a response  to the user before the deadline, d, 
the size of the required data to transfer, and the fraction of operations that can be executed 
in parallel. 

4.2 Utility Function 

The system response time is sent to the Utility Function, which calculates the utility to 
the end user based on the parameters of the Computational Job. While intuitively a shorter 
total response time seems like it would always be preferred, in some cases a faster response 
may not be beneficial. For example, in a mission planning scenario, the solution may be 
required by a specific time. As long as the solution is provided before that time, it has the 
same utility to the user. After that time, however, the solution is not useful, as a decision 
would have had to be made using an alternative method. As such, defining a utility function, 
u(t), is a critical step in analyzing the affect of tradeoffs of system parameters (Fig. 2). 

 

 

Fig. 2 Utility step function 

In the mission planning situation described above, the utility function is a step function. 
That is, if the response time is within the deadline, then the system has provided the max 
utility. Otherwise, the system has provided 0 utility. This simple utility function can be 
written as 

 𝑢 =  {
𝑢𝑚𝑎𝑥,      𝑟 ≤ 𝑑

 0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 . (1) 

Of course, a system designer should customize the Utility Function by specifying a more 
complex function of response time (multiple steps, piecewise linear, exponential, etc.) to 
accurately reflect the scenario at hand.
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4.3 System Latency 

As described previously, the 2 major components of the model are communication time and 
computation time. For simplicity of exposition, in this work we adopt the most naive 
definition of communication latency, lcomm , which we define to be 

𝑙𝑐𝑜𝑚𝑚 (𝑓, ℎ, 𝐵𝑊𝑦, 𝑦) =  ∑
𝑓

𝐵𝑊𝑦[𝑖]

ℎ
𝑖=1 =  ∑

𝑓

𝐵𝑊0[𝑖]1.5𝑦
ℎ
𝑖=1  , (2) 

where f is the file size of the data necessary to transfer, BW0 is the average bandwidth of the 
hth hop of the channel between the user and the target computation device in the current year, 
and y is the number of years in the future. This value is a good indicator of the performance 
of a current system, but also can help determine the best hardware acquisitions for future 
systems. Again, because of the modularity of the model, it is possible for designers to 
substitute the most accurate value for communication latency that can be obtained in their 
system. 

It is necessary to use a slightly less naive model of computation to observe realistic effects. 
We compute the computation latency as 

 𝑙𝑐𝑜𝑚𝑝  =  
𝑂

𝐹 ∙𝑆
 , (3) 

where O is the total number of operations, F is the number of FLOPS per processor, and, 
from Amdahl’s law12, the theoretical speedup of multithreaded execution, S, can be 
computed as 

 𝑆 =  
1

(1−𝑝)+ 
𝑝

𝑛𝑝

 . (4) 

Here, p is the proportion of the application that is parallelizable. To model the total system 
latency, we add the communication and computation latencies to obtain 

 𝑙 (𝑓, 𝑂, 𝑝, ℎ, 𝐵𝑊0, 𝑛𝑝, 𝐹0, 𝑦) =  𝑙𝑐𝑜𝑚𝑚 (𝑓, ℎ, 𝐵𝑊𝑦 , 𝑦) +  𝑙𝑐𝑜𝑚𝑝 (𝑂, 𝑝, 𝑛𝑝, 𝐹0, 𝑦) . (5) 

Equation 5 is the main contribution of this work. It clearly lays out how an offloading system 
designer can substitute known values of their hardware and applications to obtain a general 
idea of system performance.
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4.4 Usefulness Over Time 

Figure 3 illustrates how the development of technology over time is captured by our model. 
The thick blue lines represent the development of technologies related to the Network (e.g., 
increase in bandwidth), and Compute Devices (e.g., increase in FLOPS). By repeatedly 
applying these transformations, we can attempt to predict how user utility will change in 
the future. The computation strategy that performs best with today’s technology might not 
be the same computation mechanism that performs best with the technology that will be 
fielded 5 to 10 years from now. This helps designers identify which strategy is most 
worthwhile to pursue for lasting effectiveness. 

 

 

Fig. 3 An illustration of the relationships between the major model components. The moving from left 

to right over the dashed vertical line indicates a step 1 year forward in time 

5. Analysis 

To demonstrate how a system designer can use our model, we illustrate the simplest 
computation strategy to not offload the computational job, but to simply execute it on the 
user’s handheld device. Since no data is being sent over the network, there is no need to 
model any network communication. The user’s handheld device contains a single processor, 
so there is no opportunity for parallel execution. We take Utility to be a step function. The 
deadline and max utility are provided as model inputs that are part of the Computational 
Job. 
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In the following table, we provide some realistic sample values that we will use to 
demonstrate the application of our model. In Fig. 4, we plot the communication and 
computation latency, as well as the derived total response time as a function of distance from 
the user using the values in the table. 

Table Estimated values versus distance 

Distance From User 

(m)a 
Hops From User Number of Processors 

Bandwidth 

(Mbps)b 

10 1 8 0.5 
100 2 64 0.5 

1000 3 512 40 
10000 4 4096 40 

100000 5 32768 200 
am, meters; bMbps, megabits per second. 
 

 

Fig. 4 Prediction of communication, computation, and total response time vs. distance from user 

In this example, the user will be executing a job where the number of operations needed to 
complete the job is provided as a model input that is part of the Computational Job. 
According to Moore’s law13, transistor counts double every 18 months, which corresponds 
to an increase of 60% per year. We take this value for our FLOPS change over time. We 
set FLOPS at time 0 (the year 2014) to 2.5 billion (based on the 2.5-GHz clock speed of a 
standard smart phone, and assumes 1 operation per clock cycle), and arrive at the 
expression for the improvement of the user’s computation capability over time as FLOP S(t) 
= FLOP St  1.6t. With these assumptions, we see in Fig. 5 that by simply waiting 3 years, the 
user can obtain considerable more utility without changing any other system parameters. 
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Fig. 5 Response time and utility as a function of years into the future 

Decision Boundaries 

One of the most powerful ways that our model can be employed is to make a decision as to 
where to offload a computational job. After a system designer specifies all of the model 
parameters corresponding to their scenario, a chart, as shown in Fig. 6, can be produced 
to give an “at-a-glance” view of the behavior of the system where the decision of where to 
offload any job can be read immediately. To generate these decisions, we choose the 
offloading target with the minimum system response time. That is, we can find the ideal 
target computation device by optimizing: 

 h∗ = min r(h) (6) 

where h∗ is the number of hops from the user where the ideal offload target resides, and r(h) 
is the system response time for a device h hops away from the user. In Fig. 6, we show the 
decision boundaries for the system described by our running example.
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Fig. 6 Offloading decision boundaries 

In Fig. 6 each cell corresponds to a computational job with different attributes. The color of 
the cell indicates the optimal offloading decision that should be made for a job with the 
corresponding attributes. The number of serial operations is held constant over all jobs. We 
noticed clear “bands” of job attributes where offloading to a particular place in the network 
is optimal. A system designer can use this type of output to quickly see what the effect of 
changing some system parameters, like the number of processors placed at a particular point 
in the network, would have on the overall system response time for particular job types. 

6. Conclusions and Future Work 

We have presented a simple, modular model of computation on the modern battlefield. We 
have shown that a high-level model is useful for studying a number of important properties 
of a system designed to provide computational assistance to an end user. By customizing 
such a model with the existing or proposed parameters of an offloading system, system 
designers can make quick, intelligent decisions about where to place resources, and how 
to best take advantage of them. 

In future work, we will compute error measurements as compared to fielded systems. We 
will then perform a sensitivity analysis to determine the accuracy of our model, as well as 
determine which parameters the model is most sensitive to, informing us as to which parts 
of the model should be improved first. 
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